
International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 1318
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Theoretically optimal computing frontiers for
rapid multiplication through decomposition

Nikolay Raychev

Abstract - The productivity of the computation systems is determined to a high degree by the speed of multiplication,
which is а basic element in multiple applications for digital signal processing, quantum computations, etc. The various
approaches for design of asymptotically rapid algorithms for multiplication have developed in parallel with the evolution
of the effective multiplicator architectures. This article examines different approaches for optimal rapid multiplication..

Index Terms— boolen function, circuit, composition, encoding, gate, phase, quantum.

——————————  ——————————

1. INTRODUCTION

The algorithm for multiplication is a major factor in the
computation systems both for digital signal processing,
filters, etc. So that the implementation of these applications
can be improved by optimizing various parameters of the
multiplication algorithms, as power, speed, area and fault
tolerant property. According to the Moore's Law in 2020
the main components of the computer memory will reach
the size of the atom. In such scales the theory on which are
built the present computers will stop functioning and
through the quantum computers will have to be reinvented
the theory of the computer sciences.

The algorithm for multiplication involves generating and
adding a partial product. So that the implementation of the
multiplication algorithm depends on the number of the
partial products and the speed of the adder. This article
deals with the study and comparison of the different
algorithms for multiplication mainly from the standpoint of
speed, quantum costs and fault tolerant property. The
purpose of the study is to find and offer the best theoretical
results in terms of speed, power and quantum price.

The detection of asymptotically fast algorithm for
multiplication is one of those easily available, but difficult
to solve problems that are time-consuming. Although the
problem is difficult, perhaps it is best presented by
asymptotically the fastest known algorithm with time for
performance О(𝑛 log(𝑛) 23𝑙𝑜𝑔∗𝑛) instead of the considered to
be optimal О(𝑛 log(𝑛)), it hides different small useful
guidelines for optimization. For example, here is one
insignificant guideline: squaring is not less resource
consuming than multiplying. If a person can square
quickly, then he can multiply quickly, by rewriting a ⋅b in
the following form: 1

4
(𝑎 + 𝑏)2 − (𝑎 − 𝑏)2. This asymptotic

equation is convenient, because some algorithms for
multiplication are easier to understand compared to the
squaring algorithms, because:

(𝑎 ≪ 𝑛 + 𝑏)2 = (𝑎2 ≪ 2𝑛) + (((𝑎+ 𝑏)2 − 𝑎2 − 𝑏2)

≪ 𝑛) + 𝑏2)

Although there was not much of a progress achieved
concerning the issue with rapid multiplication, can be
examined some interesting guidelines for optimization.

2. CONVOLUTION AND PRINCIPAL ROOTS

The fastest known algorithms for multiplication are based
on the convolution theory. They use a change of the basis,
to turn cyclical convolutions into pointwise products. In
this way the difficult part of multiplying, adding up all
small sub-factors, can be reduced up to a cyclic
convolution.

The essential thing that is necessary in order to make the
convolution theorem to work is a principal root of
unitarity. With such a root can be created a set of basis
vectors 𝑣0,𝑣1 …𝑣𝑛−1, where there are no cross-links when
performing a cyclic convolution. In other words, when
calculating the cyclic convolution of two basis vectors
𝑣𝑎 ∗ 𝑣𝑏 is obtained 0. This is useful, because it means that
the sums from the convolution (𝑣𝑎 + 𝑣𝑏) ∗ (𝑣𝑎 + 𝑣𝑏) will be
simplified into (𝑣𝑎∗2 + 𝑣𝑏∗2) instead of 𝑣𝑎∗2 + 𝑣𝑏∗2 + 2𝑣𝑎 ∗
𝑣𝑏 The loss of the part 2𝑣𝑎 ∗ 𝑣𝑏 reduces the fractionation
when recurring, which is important when it comes to
asymptotic complexity.

What exactly is a principal root of unitarity? Formally, the
n-th principal root of unitarity λ must satisfy two
properties:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 1319
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

1. A unitarity must be obtained when raising on the
n-th power. Otherwise it would not be a root of
unitarity
𝜆𝑛 = 1

2. If all powers of λ or every second power, or every

third power, or every k power are summed up,
must be obtained 0. This is the part without cross-
links
∑ 𝜆𝑘𝑖𝑛−1
𝑖=0 = 0 for every 𝑘 ∈ [1,𝑛)4T

For example, the number two is a fourth principal root of
unitarity, when working modulo five:

• Exponentiating to one: 24 = 16 = 1(𝑚𝑜𝑑 5)4T
• The sum of the powers is zero: 20 + 21 + 22 + 23 = 1 +
2 + 4 + 8 = 15 = 0 (𝑚𝑜𝑑 5)
• The sum of every second power is zero: 20 + 22 + 24 +
28 = 1 + 4 + 16 + 64 = 85 = 0 (𝑚𝑜𝑑 5)
• The sum of every third power is zero: 20 + 23 + 26 + 29 =
20 + 23 + 22 + 21 = 15 = 0 (𝑚𝑜𝑑 5)

A more commonly used example of a principal root of
unitarity is the complex root of unitarity. A specific
example is that the complex number cos (𝜏 3�)4T+𝑖sin (𝜏 3�)4T is
the third principal root of unitarity. More generally 𝑒𝑖𝜏 𝑛� is
always an n-th principal root of unitarity and forms the
basis of the Fourier transform.

After having a principal root of unitarity we can now
construct a basis without cross-links.

A useful basis

Let there be given an n-th principal root of unitarity λ. It is
known that λ satisfies some useful properties related to the
sums of the powers, the sums of the even powers, etc., so
let's use that. The entries of the vectors are taken directly
from the lists of things that must give zero. More
specifically, the j-th entry of the к-th vector will be 𝜆𝑘𝑖. That
gives us a set of basis vectors:

𝑣0 = [1,1,1, … ,1]
𝑣1 = [1, 𝜆, 𝜆2, … , 𝜆𝑛−1]
𝑣2 = [1, 𝜆2,𝜆4, … ,𝜆(𝑛−1)2]
...
𝑣𝑘 = [1,𝜆𝑘 ,𝜆2𝑘 , … , 𝜆(𝑛−1)𝑘]
...
𝑣𝑛−1 = [1,𝜆𝑛−1,𝜆𝑛−2, … , 𝜆]

Let's now consider what is happening, when computing
the cyclic convolution of two basis vectors 𝑣𝑎 ∗ 𝑣𝑏 с a ≠ b.
The i-th entry of the resulting vector will be equal to:

(𝑣𝑎 ∗ 𝑣𝑏)𝑖 = �𝜆𝑎𝑗
𝑛−1

𝑗=0

𝜆(𝑖−𝑗)𝑏 = 𝜆𝑏𝑖�𝜆(𝑎−𝑏)𝑗
𝑛−1

𝑗=0

But in the last term a−b is constant and is multiplied with
iteration variable. This is one of the sums, which should
result to zero, if λ is a principal root of unitarity! Therefore
𝑣𝑎 ∗ 𝑣𝑏 = 0, when 𝑎 ≠ 𝑏. When 𝑎 = 𝑏4T, instead of this are
summed n copies of 𝜆0 = 14T and are multiplied by the
original value of the vector. So in the end is obtained a
scaling: 𝑣𝑎∗2 = 𝑛𝑣𝑎

The above facts suggest significant optimizations when it
comes to re-expressing a cyclic convolution with respect to
a special basis v. A vector x may be decomposed into
𝑥 = 𝑎0𝑣𝑎 + 𝑎1𝑣1 +⋯+ 𝑎𝑛−1𝑣𝑛−1, and then 𝑥∗2 will be
simplified in the following way:

𝑥∗2 = (𝑎0𝑣0 + 𝑎1𝑣1 +⋯+ 𝑎𝑛−1𝑣𝑛−1)∗2
 = (𝑎0𝑣0)∗2 + (𝑎1𝑣1)∗2 +⋯+ (𝑎𝑛−1𝑣𝑛−1)∗2
 = 𝑛(𝑎02𝑣0 + 𝑎12𝑣1 +⋯+ 𝑎𝑛−12𝑣𝑛−1)

In other words, if it effectively can be converted to and
from the special basis (usually through adaptation of an
algorithm for Fast Fourier Transform), then a given number
can quickly be squared (or to be multiplied two numbers)
by converting to the special basis, as each coefficient is
squared individually, then is converted back.

In practice: Schönhage–Strassen Algorithm

The algorithm of Schönhage–Strassen (SSA) is an algorithm
for multiplication, based on a convolution, and has been
the fastest known for decades. SSA works in the scope of
the integers modulo 22𝑠 + 1 Let's define 𝑚 = 2𝑠 This is how
it is worked modulo 2𝑚 + 1

It turns out that two is 2𝑚-th principal root of unitarity of
that range. This is ultimately the reason SSA is so fast: The
change of the basis can be done with shifts instead of
multiplications. Instead of taking the time О(𝑛 log2(𝑛)),
SSA only uses time О(𝑛 log(𝑛)) for its change of the basis.
Although the change on the basis of SSA takes time
О(𝑛 log(𝑛)), the entire time for running of SSA still is
О(𝑛 log(𝑛) log(log(𝑛))) What is happening? Must be
something with the selected principal root of unitarity,
completely overlapping too quickly.

In the field with 2𝑚 + 1 elements, it takes only m doublings,
in order to reach 2𝑚, the value identically equal to -1. After
m more doublings, effectively multiplying by -1, again is
obtained 1. SSA uses a principal root of unitarity of order
2𝑠+1 = 2𝑚 and that order is logarithmic with respect to the
field size 2𝑚 + 1

The logarithmic order of the principal root of unitarity has
a major consequence: limiting how many pieces can be
used when splitting up a number to be squared. The
purpose is to represent each piece as a linear combination
of vectors from a basis with dimension equal to the order of
the principal root of unitarity, but if there are more pieces,
then there must be some direction which is not covered. An

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 1320
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

n-dimensional vector space can not be stuck into an (n-d)-
dimensional vector space, without losing information.

Let's divide the input number to a k pieces with a size of 𝑛

𝑘
.

A field with at least k roots is needed in order to be
processed all those pieces, so 2m must be at least k. In
addition, the field is necessary to be large enough in order
to hold 𝑛

𝑘
 bits for each piece, and that means m must be at

least 𝑛
𝑘
 (plus a bit more). The last restriction requires the use

of very small pieces, but the previous one limits strongly
how small they can be.

Both opposing restrictions comply to 𝑘 ≈ √𝑛, so at the end
are used √𝑛 pieces with a size of √𝑛. It takes log(log(𝑛))
repeated square roots, to go from n to a basis with constant
size and from there comes the additional factor log(log(𝑛))
in the complexity of implementation.

Contrary to the above it is interesting what can be done, if
working modulo a prime p with a p−1-th principal root of
unitarity. The restrictions for the size of the pieces and the
number of roots will look like 𝑝 ≥ 𝑘 и 𝑝 ≥ 2

𝑛
𝑘 These new

restriction lead to 𝑘 ≈ 𝑛
log (𝑛)

 so that logarithmically large
pieces can be used.

The logarithmically large pieces are great because they
allow for shortening the recursion.

Performing many small squarings fast

If n

log (𝑛)� squarings with a size of log (𝑛) have to be
performed, they may be performed for a time 𝑂(log(𝑛)).
The trick to do this is to sort the input data into ascending
order (but the original order must be also kept) and then to
record each possible square number, while iterating the
input data.

def q_stream_square(inputs):
 """
 Squares n inputs of size w for time O(w n log(n) + w
2^w).
 """
 q_indexed = zip(inputs, range(len(inputs))) # O(w n)
 q_ordered = sorted(indexed, key=lambda e: e[0]) # O(w
n log(n))

 # O(n w + w 2^w)
 counter = 0
 q_counter_squared = 0
 q_ordered_squared = []
 for e in q_ordered:
 while counter < e[0]:
 # This internal cycle takes totally O(w 2^w).
 # Works at most 2^w times and cost w each time.
 q_counter_squared += counter
 counter += 1

 q_counter_squared += counter
 q_ordered_squared.append((q_counter_squared, e[1]))
 q_restored = sorted(q_ordered_squared, key=lambda e:
e[1]) # O(w n log(n))
 return [e[0] for e in q_restored] # O(w n)

This means that if a change of a basis can be performed
with application of the convolution theorem for a time
𝑂(log(𝑛)), and at the end there are 𝑂(𝑛 log(𝑛)�) pieces of
size log(𝑛) then the multiplication can be done for a time
𝑂(𝑛 log(𝑛)).

The above does not apply to SSA, because working modulo
22𝑠 + 1 does not give enough pieces.

Degenerate orders

Let's assume that is working with the scope of integers
modulo 3𝑛. Therefore, it happens that 2 satisfies all the
requirements to be the 2 ∙ 3𝑛-th principal root of unitarity
for that scope. Does this mean that the convolution
theorem can be applied, in order to perform a
multiplication cheaply? Not exactly.

In the special basis for turning of a convolution into point-
wise multiplication, 𝑣𝑎∗2 is equal to 𝑛𝑣𝑎, where n is the
order of the root. In the case of integers modulo 3𝑛 with
principal root of unitarity two, this comes out as 2 ∙
3𝑛−1𝑣𝑘... But the multiplication includes a large power of
three, and the powers of three do not have a reciprocal
value, when working modulo 3𝑛. In this scope can not be
undone the multiplication, created by the convolution
theorem! In an attempt to compute a convolution in this
way, the entire information is just pushed out of the scope.

Therefore the Schönhage–Strassen algorithm requires the
use of a field with a size of double power of two such as
22𝑠 + 1, instead of 2𝑛 + 1. The principal root of unitarity
(two) has a power 2𝑛, when working modulo 2𝑛 + 1, but 2𝑛
may not have a reciprocal value in such a context. For
example, when working modulo 29 + 1, the application of
the convolution theorem will cause a multiplication by 9,
but 29 + 1 = 513 = 57 ∙ 9, such that this multiplication can
not be undone. In this way a convolution would throw out
information.

When n is 2𝑛 also a power of two, then for sure there is a
reciprocal value, because the principal root of unitarity
passes through each power of two on the cycle back to 1.
Therefore, SSA adhere to fields of size 22𝑠 + 1. (Additional
benefit from the requirement the number of pieces to be a
power of two is that the simple Cooley-Tukey algorithm
may be reworked for the change of the basis, instead of
using something more complicated.)

Thus not only is necessary a quick change of the basis and a
principal root of unitarity of a large order, but care must be

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 1321
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

taken from where comes this size. If the order shares
coefficients, with the size of the scope, it will not work.

Let's now examine a few more things that do not work.

Tried things

The title of the article says the problem with the rapid
multiplication is not solved. Here are listed several things,
which are tried and do not work.

1. Caching of the squares.
The caching of the multiplications up to numbers of size
log(n) would take space О(𝑛2), but caching only the squares
takes O(n). A lookup-table can be made and squarings of
size log(n) can be performed for a constant time.

Unfortunately, despite the fact that this gives useful ideas,
there are practical and theoretical reasons why this lookup-
table will not work.

In practice, a given computer can already square numbers
up to 128 bits for a constant time, and simply there would
not be a space to store a table with more than 2128 elements.

In theory, the lookup-table creates a conflict with the rules
of the abstract machine that is used. If working in a RAM
model with logarithmically big words, then the squarings
can already be cached for a constant time. If working with a
bit complexity, then the requests are not a constant time,
because is needed a O(logn) time only for reading the bits
of the offset. If thinking about multi-tape Turing machines,
then they do not have a random access.

In the end, there is no actual benefit, i.e. it does not work.

2. Use of the field of integers modulo a prime p.
The algorithm SSA is based on the use of an alternative
arithmetic system, the integers modulo 22𝑠 + 1. Perhaps can
be applied also better systems?

There are primes, where two is p-1-th principal root of
unitarity modulo p. That's as proportionally large as the
order of a root of unitarity will become; it is cycled through
any other value in the field before returning to 1! This,
however, means that the powers of two can not satisfy any
property for making the coefficients cheap for application.
Too expensive, i.e. does not work.

3. And why not module (2𝑛 + 1)𝟐 or (2𝑛 − 1)𝟐?
The hope for this idea is that the squaring of the size will
square the order of the root, and will not ruin everything.
Unfortunately, the hope is in vain.

Instead of squaring the order of the root, e.g. from 2m to
4𝑚2 the squaring of the scope seems to multiply the order
of the root by the same coefficient that the size of the scope

was multiplied by. That is a problem, because it means that
the size of the scope is not already relatively prime to the
order of the root, in other words end of information upon
convolution.

Gives wrong answers, i.e. does not work.

4. Module 3𝑛?
As already explained, the size of the field is not relatively
prime to the order of the root.

Gives wrong answers, i.e. does not work.

5. And what if working modulo 𝑙𝑐𝑚(2𝑛 + 1,2 ∙ 2𝑛 +
1)?
This particular scope is tempting.

In the first place, that takes quadratically many doublings,
in order to reach 1, which would allow alteration of SSA to
use instead of √𝑛 √𝑛3 2

 pieces, and thus to avoid the above
factor log(logn).

On the second place, the operations are cheap. A number x
may be represented as a pair of numbers
[𝑥 𝑚𝑜𝑑(2𝑚 + 1),𝑥 𝑚𝑜𝑑(2 ∙ 2𝑚 + 1)] and later to recover its
value thanks to the Chinese remainder theorem. Within
that representation, adding or multiplying two values is
done point-wise, i.e. [2,3] ∙ [5,7] = [2 ∙ 5, 3 ∙ 7] Combined
with the fact that this representation turns each power of
two into а pair of powers of two, may directly be used
tricks of SSA for cheap performance of rotations.

Then what is the problem? Two is a root of unitarity of that
scope, but not a principle root of unitarity.

There is a cross-talk, i.e. it does not work.

6. Using the Hadamard transformation.
The Hadamard transformation is extremely similar to the
rapid Fourier transform, but can be done in time O(nlogn)
without multiplication thanks to the rapid Walsh-
Hadamard transform. So maybe something interesting will
happen, if the convolution theorem is applied to the basis
of Hadamard?

Actually really something interesting is happening! In the
end, must be calculated
𝑦𝑗 = ∑ 𝑥𝑖𝑛−1

𝑖=0 𝑥𝑗⨁𝑖.

Only that the objective is to calculate 𝑦𝑗 = ∑ 𝑥𝑖𝑛−1

𝑖=0 𝑥𝑗−𝑖. It is
close, but it is not the result sought.

There are cross-links, i.e. it does not work.

3. SUMMARY

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 1322
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

The algorithms for rapid multiplication use a change of
basis and the convolution theorem in order to turn many-
to-many multiplication into one-to-one multiplication.

If a way is found to break a number of n/log(n) to pieces of
size logn and can be performed a change of basis for a time
O(nlogn), then it may be used a sorting and recording of all
squares up to logn for creation of an overall algorithm for
multiplication O(nlogn).

If а principal root of unitarity of order n is selected and n
does not have a reciprocal value in the working context it is
very likely not to obtain a solution.

REFFERENCES

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information, 1st ed. (Cambridge University
Press, Cambridge, UK, 2000).
[2] P. W. Shor, SIAM Journal on Computing 26, 1484 (1997).
[3] L. K. Grover, Physical Review Letters 79, 325 (1997).
[4] C. H. Bennett and G. Brassard, in Proceedings of IEEE
international Conference on Computers, Systems and Signal
Processing, Bangalore, India (IEEE Press, New York, 1984), p.
175.
[5] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[6] C. Elliott, New Journal of Physics 4, 46 (2002). 12
[7] C. Elliott, D. Pearson, and G. Troxel, in Proceedings of the
ACM SIGCOMM 2003 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communication, August 25-29, 2003, Karlsruhe, Germany.
(PUBLISHER, ADDRESS, 2003), pp. 227–238.
[8] C. Elliott, IEEE Security & Privacy 2, 57 (2004).
[9] C. Elliott et al., in Current status of the DARPA quantum
network (Invited Paper), edited by E. J. Donkor, A. R. Pirich,
and H. E. Brandt (SPIE, ADDRESS, 2005), No. 1, pp. 138–
149.
[10] J. H. Shapiro, New Journal of Physics 4, 47 (2002).
[11] B. Yen and J. H. Shapiro, IEEE Journal of Selected
Topics in Quantum Electronics 9, 1483 (2003).
[12] S. Lloyd et al., SIGCOMM Comput. Commun. Rev. 34,
9 (2004).
[13] I.-M. Tsai and S.-Y. Kuo, IEEE Transactions on
Nanotechnology 1, 154 (2002).
[14] S.-T. Cheng and C.-Y. Wang, IEEE Transactions on
Circuits and Systems I: Regular Papers 53, 316 (2006).
[15] J. C. Garcia-Escartin and P. Chamorro-Posada, Phys.
Rev. Lett. 97, 110502 (2006).
[16] M. Oskin, F. T. Chong, and I. L. Chuang, Computer 35,
79 (2002).
[17] D. Copsey et al., IEEE Journal of Selected Topics in
Quantum Electronics 9, 1552 (2003).
[18] C. H. Bennett and S. J. Wiesner, Physical Review
Letters 69, 2881 (1992).
[19] X. S. Liu, G. L. Long, D. M. Tong, and F. Li, Phys. Rev.
A 65, 022304 (2002).

[20] A. Grudka and A. W´ojcik, Phys. Rev. A 66, 014301
(2002).
[21] C.-B. Fu et al., JOURNAL OF THE KOREAN
PHYSICAL SOCIETY 48, 888891 (2006).
[22] A. Winter, IEEE Transactions on Information Theory
47, 3059 (2001).
[23] H. Concha, J.I.; Poor, IEEE Transactions on Information
Theory 50, 725 (2004).
[24] M. Fujiwara, M. Takeoka, J. Mizuno, and M. Sasaki,
Physical Review Letters 90, 167906 (2003).
[25] J. R. Buck, S. J. van Enk, and C. A. Fuchs, Phys. Rev. A
61, 032309 (2000).
[26] M. Huang, Y. Zhang, and G. Hou, Phys. Rev. A 62,
052106 (2000).
[27] B. J. Yen and J. H. Shapiro, in Two Problems in Multiple
Access Quantum Communication, edited by S. M. Barnett et
al. (AIP, ADDRESS, 2004), No. 1, pp. 25–28.
[28] B. J. Yen and J. H. Shapiro, Physical Review A (Atomic,
Molecular, and Optical Physics) 72, 062312 (2005).
[29] B. Sklar, IEEE Communications Magazine 21, 6 (1983).
[30] B. Sklar, Digital Communications, 2nd ed. (Prentice Hall,
Upper Saddle River, New Jersey 07458, 2000).
[31] P. D. Townsend, Nature 385, 47 (1997).
[32] V. Fernandez et al., in Quantum key distribution in a
multi-user network at gigahertz clock rates, edited by G.
Badenes, D. Abbott, and A. Serpenguzel (SPIE, ADDRESS,
2005), No. 1, pp. 720–727.
[33] Nikolay Raychev. Dynamic simulation of quantum
stochastic walk. In International jubilee congress (TU),
2012.
[34] Nikolay Raychev. Classical simulation of quantum
algorithms. In International jubilee congress (TU), 2012.
[35] Nikolay Raychev. Interactive environment for
implementation and simulation of quantum algorithms.
CompSysTech'15, DOI: 10.13140/RG.2.1.2984.3362, 2015
[36] Nikolay Raychev. Unitary combinations of formalized
classes in qubit space. International Journal of Scientific
and Engineering Research 04/2015; 6(4):395-398. DOI:
10.14299/ijser.2015.04.003, 2015.
[37] Nikolay Raychev. Functional composition of quantum
functions. International Journal of Scientific and
Engineering Research 04/2015; 6(4):413-415.
DOI:10.14299/ijser.2015.04.004, 2015.
[38] Nikolay Raychev. Logical sets of quantum operators.
International Journal of Scientific and Engineering
Research 04/2015; 6(4):391-394.
DOI:10.14299/ijser.2015.04.002, 2015.
[39] Nikolay Raychev. Controlled formalized operators. In
International Journal of Scientific and Engineering
Research 05/2015; 6(5):1467-1469, 2015.
[40] Nikolay Raychev. Controlled formalized operators
with multiple control bits. In International Journal of
Scientific and Engineering Research 05/2015; 6(5):1470-
1473, 2015.
[41] Nikolay Raychev. Connecting sets of formalized
operators. In International Journal of Scientific and
Engineering Research 05/2015; 6(5):1474-1476, 2015.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 1323
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

[42] Nikolay Raychev. Indexed formalized operators for n-
bit circuits. International Journal of Scientific and
Engineering Research 05/2015; 6(5):1477-1480, 2015.
[43] Nikolay Raychev. Converting the transitions between
quantum gates into rotations. International Journal of
Scientific and Engineering Research 06/2015; 6(6): 1352-
1354. DOI:10.14299/ijser.2015.06.001, 2015.
[44] Nikolay Raychev. Quantum algorithm for non-local
coordination. International Journal of Scientific and
Engineering Research 06/2015; 6(6):1360-1364.
DOI:10.14299/ijser.2015.06.003, 2015.
[45] Nikolay Raychev. Universal quantum operators.
International Journal of Scientific and Engineering Research
06/2015; 6(6):1369-1371. DOI:10.14299/ijser.2015.06.005,
2015.
[46] Nikolay Raychev. Ensuring a spare quantum traffic.
International Journal of Scientific and Engineering Research
06/2015; 6(6):1355-1359. DOI:10.14299/ijser.2015.06.002,
2015.
[47] Nikolay Raychev. Quantum circuit for spatial
optimization. International Journal of Scientific and
Engineering Research 06/2015; 6(6):1365-1368.
DOI:10.14299/ijser.2015.06.004, 2015.

[48] Nikolay Raychev. Encoding and decoding of
additional logic in the phase space of all operators.
International Journal of Scientific and Engineering
Research 07/2015; 6(7): 1356-1366.
DOI:10.14299/ijser.2015.07.003, 2015.
[49] Nikolay Raychev. Measure of entanglement by
Singular Value decomposition. International Journal of
Scientific and Engineering Research 07/2015; 6(7): 1350-
1355. DOI:10.14299/ijser.2015.07.004, 2015.
[50] Nikolay Raychev. Quantum algorithm for spectral
diffraction of probability distributions. International
Journal of Scientific and Engineering Research 08/2015;
6(7): 1346‐‐1349. DOI:10.14299/ijser.2015.07.005, 2015.
[51] Nikolay Raychev. Reply to "The classical-quantum
boundary for correlations: Discord and related measures".
Abstract and Applied Analysis 11/2014; 94(4): 1455-1465,
2015.
[52] Nikolay Raychev. Reply to "Flexible flow shop
scheduling: optimum, heuristics and artificial intelligence
solutions". Expert Systems; 25(12): 98-105, 2015.
[53] Nikolay Raychev. Classical cryptography in quantum
context. Proceedings of the IEEE 10/2012, 2015.

 IJSER

http://www.ijser.org/

