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Theoretically optimal computing frontiers for 
rapid multiplication through decomposition 

 
Nikolay Raychev 

Abstract - The productivity of the computation systems is determined to a high degree by the speed of multiplication, 
which is а basic element in multiple applications for digital signal processing, quantum computations, etc. The various 
approaches for design of asymptotically rapid algorithms for multiplication have developed in parallel with the evolution 
of the effective multiplicator architectures. This article examines different approaches for optimal rapid multiplication..  

Index Terms— boolen function, circuit, composition, encoding, gate, phase, quantum.   
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1. INTRODUCTION        
                                                               
The algorithm for multiplication is a major factor in the 
computation systems both for digital signal processing, 
filters, etc. So that the implementation of these applications 
can be improved by optimizing various parameters of the 
multiplication algorithms, as power, speed, area and fault 
tolerant property. According to the Moore's Law in 2020 
the main components of the computer memory will reach 
the size of the atom. In such scales the theory on which are 
built the present computers will stop functioning and 
through the quantum computers will have to be reinvented 
the theory of the computer sciences. 
 
The algorithm for multiplication involves generating and 
adding a partial product. So that the implementation of the 
multiplication algorithm depends on the number of the 
partial products and the speed of the adder. This article 
deals with the study and comparison of the different 
algorithms for multiplication mainly from the standpoint of 
speed, quantum costs and fault tolerant property. The 
purpose of the study is to find and offer the best theoretical 
results in terms of speed, power and quantum price. 
 
The detection of asymptotically fast algorithm for 
multiplication is one of those easily available, but difficult 
to solve problems that are time-consuming. Although the 
problem is difficult, perhaps it is best presented by 
asymptotically the fastest known algorithm with time for 
performance О(𝑛 log(𝑛) 23𝑙𝑜𝑔∗𝑛) instead of the considered to 
be optimal О(𝑛 log(𝑛)), it hides different small useful 
guidelines for optimization. For example, here is one 
insignificant guideline: squaring is not less resource 
consuming than multiplying. If a person can square 
quickly, then he can multiply quickly, by rewriting a ⋅b in 
the following form: 1

4
(𝑎 + 𝑏)2 − (𝑎 − 𝑏)2. This asymptotic 

equation is convenient, because some algorithms for 
multiplication are easier to understand compared to the 
squaring algorithms, because: 
 
(𝑎 ≪ 𝑛 + 𝑏)2 =  (𝑎2 ≪ 2𝑛) + (((𝑎+ 𝑏)2 − 𝑎2 − 𝑏2)

≪ 𝑛) + 𝑏2) 
 
Although there was not much of a progress achieved 
concerning the issue with rapid multiplication, can be 
examined some interesting guidelines for optimization. 
 
2. CONVOLUTION AND PRINCIPAL ROOTS 

 
The fastest known algorithms for multiplication are based 
on the convolution theory. They use a change of the basis, 
to turn cyclical convolutions into pointwise products. In 
this way the difficult part of multiplying, adding up all 
small sub-factors, can be reduced up to a cyclic 
convolution. 
 
The essential thing that is necessary in order to make the 
convolution theorem to work is a principal root of 
unitarity. With such a root can be created a set of basis 
vectors 𝑣0,𝑣1 …𝑣𝑛−1, where there are no cross-links when 
performing a cyclic convolution. In other words, when 
calculating the cyclic convolution of two basis vectors 
𝑣𝑎 ∗ 𝑣𝑏 is obtained 0. This is useful, because it means that 
the sums from the convolution (𝑣𝑎 + 𝑣𝑏) ∗ (𝑣𝑎 + 𝑣𝑏) will be 
simplified into (𝑣𝑎∗2 + 𝑣𝑏∗2) instead of 𝑣𝑎∗2 + 𝑣𝑏∗2 + 2𝑣𝑎 ∗
𝑣𝑏 The loss of the part 2𝑣𝑎 ∗ 𝑣𝑏 reduces the fractionation 
when recurring, which is important when it comes to 
asymptotic complexity. 
 
What exactly is a principal root of unitarity? Formally, the 
n-th principal root of unitarity λ must satisfy two 
properties: 
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1. A unitarity must be obtained when raising on the 
n-th power. Otherwise it would not be a root of 
unitarity  
𝜆𝑛 = 1 

 
2. If all powers of λ or every second power, or every 

third power, or every k power are summed up, 
must be obtained 0. This is the part without cross-
links 
∑ 𝜆𝑘𝑖𝑛−1
𝑖=0 = 0  for every 𝑘 ∈ [1,𝑛)4T  

 
For example, the number two is a fourth principal root of 
unitarity, when working modulo five: 
 
• Exponentiating to one: 24 = 16 = 1(𝑚𝑜𝑑 5)4T  
• The sum of the powers is zero: 20 + 21 + 22 + 23 = 1 +
2 + 4 + 8 = 15 = 0 (𝑚𝑜𝑑 5) 
• The sum of every second power is zero: 20 + 22 + 24 +
28 = 1 + 4 + 16 + 64 = 85 = 0 (𝑚𝑜𝑑 5) 
• The sum of every third power is zero: 20 + 23 + 26 + 29 =
20 + 23 + 22 + 21 = 15 = 0 (𝑚𝑜𝑑 5) 
 
A more commonly used example of a principal root of 
unitarity is the complex root of unitarity. A specific 
example is that the complex number cos (𝜏 3� )4T+𝑖sin (𝜏 3� )4T is 
the third principal root of unitarity. More generally 𝑒𝑖𝜏 𝑛�  is 
always an n-th principal root of unitarity and forms the 
basis of the Fourier transform. 
 
After having a principal root of unitarity we can now 
construct a basis without cross-links. 
 
A useful basis 
 
Let there be given an n-th principal root of unitarity λ. It is 
known that λ satisfies some useful properties related to the 
sums of the powers, the sums of the even powers, etc., so 
let's use that. The entries of the vectors are taken directly 
from the lists of things that must give zero. More 
specifically, the j-th entry of the к-th vector will be 𝜆𝑘𝑖. That 
gives us a set of basis vectors: 
 
𝑣0 = [1,1,1, … ,1] 
𝑣1 = [1, 𝜆, 𝜆2, … , 𝜆𝑛−1] 
𝑣2 = [1, 𝜆2,𝜆4, … ,𝜆(𝑛−1)2] 
... 
𝑣𝑘 = [1,𝜆𝑘 ,𝜆2𝑘 , … , 𝜆(𝑛−1)𝑘] 
... 
𝑣𝑛−1 = [1,𝜆𝑛−1,𝜆𝑛−2, … , 𝜆] 
 
 
Let's now consider what is happening, when computing 
the cyclic convolution of two basis vectors 𝑣𝑎 ∗ 𝑣𝑏 с a ≠ b. 
The i-th entry of the resulting vector will be equal to: 

(𝑣𝑎 ∗ 𝑣𝑏)𝑖 = �𝜆𝑎𝑗
𝑛−1

𝑗=0

𝜆(𝑖−𝑗)𝑏 = 𝜆𝑏𝑖�𝜆(𝑎−𝑏)𝑗
𝑛−1

𝑗=0

 

 

But in the last term a−b is constant and is multiplied with 
iteration variable. This is one of the sums, which should 
result to zero, if λ is a principal root of unitarity! Therefore 
𝑣𝑎 ∗ 𝑣𝑏 = 0, when 𝑎 ≠ 𝑏.  When 𝑎 = 𝑏4T, instead of this are 
summed n copies of 𝜆0 = 14T and are multiplied by the 
original value of the vector. So in the end is obtained a 
scaling: 𝑣𝑎∗2 = 𝑛𝑣𝑎 
 
The above facts suggest significant optimizations when it 
comes to re-expressing a cyclic convolution with respect to 
a special basis v. A vector x may be decomposed into  
𝑥 = 𝑎0𝑣𝑎 + 𝑎1𝑣1 +⋯+ 𝑎𝑛−1𝑣𝑛−1, and then 𝑥∗2  will be 
simplified in the following way: 
 
𝑥∗2 = (𝑎0𝑣0 + 𝑎1𝑣1 +⋯+ 𝑎𝑛−1𝑣𝑛−1)∗2 
       = (𝑎0𝑣0)∗2 + (𝑎1𝑣1)∗2 +⋯+ (𝑎𝑛−1𝑣𝑛−1)∗2 
       = 𝑛(𝑎02𝑣0 + 𝑎12𝑣1 +⋯+ 𝑎𝑛−12𝑣𝑛−1) 
 
In other words, if it effectively can be converted to and 
from the special basis (usually through adaptation of an 
algorithm for Fast Fourier Transform), then a given number 
can quickly be squared (or to be multiplied two numbers) 
by converting to the special basis, as each coefficient is 
squared individually, then is converted back. 
 
In practice: Schönhage–Strassen Algorithm 
 
The algorithm of Schönhage–Strassen (SSA) is an algorithm 
for multiplication, based on a convolution, and has been 
the fastest known for decades. SSA works in the scope of 
the integers modulo 22𝑠 + 1 Let's define 𝑚 = 2𝑠 This is how 
it is worked modulo 2𝑚 + 1  
 
It turns out that two is 2𝑚-th principal root of unitarity of 
that range. This is ultimately the reason SSA is so fast: The 
change of the basis can be done with shifts instead of 
multiplications. Instead of taking the time О(𝑛 log2(𝑛)), 
SSA only uses time О(𝑛 log(𝑛)) for its change of the basis. 
Although the change on the basis of SSA takes time 
О(𝑛 log(𝑛)), the entire time for running of SSA still is 
О(𝑛 log(𝑛) log(log(𝑛))) What is happening? Must be 
something with the selected principal root of unitarity, 
completely overlapping too quickly. 
 
In the field with 2𝑚 + 1 elements, it takes only m doublings, 
in order to reach 2𝑚, the value identically equal to -1. After 
m more doublings, effectively multiplying by -1, again is 
obtained 1. SSA uses a principal root of unitarity of order 
2𝑠+1 = 2𝑚 and that order is logarithmic with respect to the 
field size 2𝑚 + 1 
 
The logarithmic order of the principal root of unitarity has 
a major consequence: limiting how many pieces can be 
used when splitting up a number to be squared. The 
purpose is to represent each piece as a linear combination 
of vectors from a basis with dimension equal to the order of 
the principal root of unitarity, but if there are more pieces, 
then there must be some direction which is not covered. An 
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n-dimensional vector space can not be stuck into an (n-d)-
dimensional vector space, without losing information. 
 
Let's divide the input number to a k pieces with a size of 𝑛

𝑘
. 

A field with at least k roots is needed in order to be 
processed all those pieces, so 2m must be at least k. In 
addition, the field is necessary to be large enough in order 
to hold 𝑛

𝑘
 bits for each piece, and that means m must be at 

least 𝑛
𝑘
 (plus a bit more). The last restriction requires the use 

of very small pieces, but the previous one limits strongly 
how small they can be. 
 
Both opposing restrictions comply to 𝑘 ≈ √𝑛, so at the end 
are used √𝑛 pieces with a size of √𝑛. It takes log(log(𝑛)) 
repeated square roots, to go from n to a basis with constant 
size and from there comes the additional factor log(log(𝑛)) 
in the complexity of implementation. 
 
Contrary to the above it is interesting what can be done, if 
working modulo a prime p with a p−1-th principal root of 
unitarity. The restrictions for the size of the pieces and the 
number of roots will look like 𝑝 ≥ 𝑘 и 𝑝 ≥ 2

𝑛
𝑘 These new 

restriction lead to 𝑘 ≈ 𝑛
log (𝑛)

 so that logarithmically large 
pieces can be used. 
 
The logarithmically large pieces are great because they 
allow for shortening the recursion. 
 
Performing many small squarings fast 
 
If n

log (𝑛)�  squarings with a size of log (𝑛) have to be 
performed, they may be performed for a time 𝑂(log(𝑛)). 
The trick to do this is to sort the input data into ascending 
order (but the original order must be also kept) and then to 
record each possible square number, while iterating the 
input data. 
 
def q_stream_square(inputs): 
    """ 
    Squares n inputs of size w for time O(w n log(n) + w 
2^w). 
    """ 
    q_indexed = zip(inputs, range(len(inputs)))  # O(w n) 
    q_ordered = sorted(indexed, key=lambda e: e[0])  # O(w 
n log(n)) 
 
    # O(n w + w 2^w) 
    counter = 0 
    q_counter_squared = 0 
    q_ordered_squared = []  
    for e in q_ordered: 
        while counter < e[0]: 
            # This internal cycle takes totally O(w 2^w). 
            # Works at most 2^w times and cost w each time. 
            q_counter_squared += counter  
            counter += 1 

            q_counter_squared += counter  
        q_ordered_squared.append((q_counter_squared, e[1]))   
   q_restored = sorted(q_ordered_squared, key=lambda e: 
e[1])  # O(w n log(n)) 
    return [e[0] for e in q_restored]  # O(w n) 
 
This means that if a change of a basis can be performed 
with application of the convolution theorem for a time 
𝑂(log(𝑛)), and at the end there are 𝑂(𝑛 log(𝑛)� ) pieces of 
size log(𝑛) then the multiplication can be done for a time 
𝑂(𝑛 log(𝑛)). 
 
The above does not apply to SSA, because working modulo 
22𝑠 + 1 does not give enough pieces. 
 
Degenerate orders 
 
Let's assume that is working with the scope of integers 
modulo 3𝑛. Therefore, it happens that 2 satisfies all the 
requirements to be the 2 ∙ 3𝑛-th principal root of unitarity 
for that scope. Does this mean that the convolution 
theorem can be applied, in order to perform a 
multiplication cheaply? Not exactly. 
 
In the special basis for turning of a convolution into point-
wise multiplication, 𝑣𝑎∗2 is equal to 𝑛𝑣𝑎, where n is the 
order of the root. In the case of integers modulo 3𝑛 with 
principal root of unitarity two, this comes out as 2 ∙
3𝑛−1𝑣𝑘... But the multiplication includes a large power of 
three, and the powers of three do not have a reciprocal 
value, when working modulo 3𝑛. In this scope can not be 
undone the multiplication, created by the convolution 
theorem! In an attempt to compute a convolution in this 
way, the entire information is just pushed out of the scope. 
 
Therefore the Schönhage–Strassen algorithm requires the 
use of a field with a size of double power of two such as 
22𝑠 + 1, instead of 2𝑛 + 1. The principal root of unitarity 
(two) has a power 2𝑛, when working modulo 2𝑛 + 1, but 2𝑛 
may not have a reciprocal value in such a context. For 
example, when working modulo 29 + 1, the application of 
the convolution theorem will cause a multiplication by 9, 
but 29 + 1 = 513 = 57 ∙ 9, such that this multiplication can 
not be undone. In this way a convolution would throw out 
information.  
 
When n is 2𝑛 also a power of two, then for sure there is a 
reciprocal value, because the principal root of unitarity 
passes through each power of two on the cycle back to 1. 
Therefore, SSA adhere to fields of size 22𝑠 + 1. (Additional 
benefit from the requirement the number of pieces to be a 
power of two is that the simple Cooley-Tukey algorithm 
may be reworked for the change of the basis, instead of 
using something more complicated.) 
 
Thus not only is necessary a quick change of the basis and a 
principal root of unitarity of a large order, but care must be 
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taken from where comes this size. If the order shares 
coefficients, with the size of the scope, it will not work. 
 
Let's now examine a few more things that do not work. 
 
Tried things 
 
The title of the article says the problem with the rapid 
multiplication is not solved. Here are listed several things, 
which are tried and do not work. 
 
1. Caching of the squares. 
The caching of the multiplications up to numbers of size 
log(n) would take space О(𝑛2), but caching only the squares 
takes O(n). A lookup-table can be made and squarings of 
size log(n) can be performed for a constant time. 
 
Unfortunately, despite the fact that this gives useful ideas, 
there are practical and theoretical reasons why this lookup-
table will not work. 
 
In practice, a given computer can already square numbers 
up to 128 bits for a constant time, and simply there would 
not be a space to store a table with more than 2128 elements. 
 
In theory, the lookup-table creates a conflict with the rules 
of the abstract machine that is used. If working in a RAM 
model with logarithmically big words, then the squarings 
can already be cached for a constant time. If working with a 
bit complexity, then the requests are not a constant time, 
because is needed a O(logn) time only for reading the bits 
of the offset. If thinking about multi-tape Turing machines, 
then they do not have a random access. 
 
In the end, there is no actual benefit, i.e. it does not work. 
 
2. Use of the field of integers modulo a prime p. 
The algorithm SSA is based on the use of an alternative 
arithmetic system, the integers modulo 22𝑠 + 1. Perhaps can 
be applied also better systems? 
 
There are primes, where two is p-1-th principal root of 
unitarity modulo p.  That's as proportionally large as the 
order of a root of unitarity will become; it is cycled through 
any other value in the field before returning to 1! This, 
however, means that the powers of two can not satisfy any 
property for making the coefficients cheap for application. 
Too expensive, i.e. does not work. 
 
3. And why not module (2𝑛 + 1)𝟐 or (2𝑛 − 1)𝟐? 
The hope for this idea is that the squaring of the size will 
square the order of the root, and will not ruin everything. 
Unfortunately, the hope is in vain. 
 
Instead of squaring the order of the root, e.g. from 2m to 
4𝑚2 the squaring of the scope seems to multiply the order 
of the root by the same coefficient that the size of the scope 

was multiplied by. That is a problem, because it means that 
the size of the scope is not already relatively prime to the 
order of the root, in other words end of information upon 
convolution. 
 
Gives wrong answers, i.e. does not work. 
 
4. Module 3𝑛? 
As already explained, the size of the field is not relatively 
prime to the order of the root. 
 
Gives wrong answers, i.e. does not work. 
 
5. And what if working modulo 𝑙𝑐𝑚(2𝑛 + 1,2 ∙ 2𝑛 +
1)? 
This particular scope is tempting. 
 
In the first place, that takes quadratically many doublings, 
in order to reach 1, which would allow alteration of SSA to 
use instead of √𝑛 √𝑛3 2

  pieces, and thus to avoid the above 
factor log(logn). 
 
On the second place, the operations are cheap. A number x 
may be represented as a pair of numbers  
[𝑥 𝑚𝑜𝑑(2𝑚 + 1),𝑥 𝑚𝑜𝑑(2 ∙ 2𝑚 + 1)] and later to recover its 
value thanks to the Chinese remainder theorem. Within 
that representation, adding or multiplying two values is 
done point-wise, i.e. [2,3] ∙ [5,7] = [2 ∙ 5, 3 ∙ 7] Combined 
with the fact that this representation turns each power of 
two into а pair of powers of two, may directly be used 
tricks of SSA for cheap performance of rotations. 
 
Then what is the problem? Two is a root of unitarity of that 
scope, but not a principle root of unitarity. 
 
There is a cross-talk, i.e. it does not work. 
 
6. Using the Hadamard transformation. 
The Hadamard transformation is extremely similar to the 
rapid Fourier transform, but can be done in time O(nlogn) 
without multiplication thanks to the rapid Walsh-
Hadamard transform. So maybe something interesting will 
happen, if the convolution theorem is applied to the basis 
of Hadamard? 
 
Actually really something interesting is happening! In the 
end, must be calculated  
𝑦𝑗 = ∑ 𝑥𝑖𝑛−1

𝑖=0 𝑥𝑗⨁𝑖. 
 
Only that the objective is to calculate 𝑦𝑗 = ∑ 𝑥𝑖𝑛−1

𝑖=0 𝑥𝑗−𝑖. It is 
close, but it is not the result sought. 
 
There are cross-links, i.e. it does not work. 
 

3. SUMMARY 
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The algorithms for rapid multiplication use a change of 
basis and the convolution theorem in order to turn many-
to-many multiplication into one-to-one multiplication. 
 
If a way is found to break a number of n/log(n) to pieces of 
size logn and can be performed a change of basis for a time 
O(nlogn), then it may be used a sorting and recording of all 
squares up to logn for creation of an overall algorithm for 
multiplication O(nlogn). 
 
If а principal root of unitarity of order n is selected and n 
does not have a reciprocal value in the working context it is 
very likely not to obtain a solution. 
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